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Abstract. Ontology matching is one of the biggest challenges of Semantic Web
research. In the last years the number of matching techniques atetnsysas
significantly increased, and this, in turn, has raised the issue of theira¢ieaiu

and comparison. In this paper we present a mapping dataset extfiatethe
Google, Yahoo and Looksmart web directories. This dataset allowbdavalu-

ation of both Precision and Recall, and it is an order of magnitude largetlea
state of the art datasets with the same capabilities. We have evaluated thé$ datas
on nine state of the art matching solutions. The evaluation results highlight the
fact that the dataset has three key properties, namely it is errqritfiednard to
solve, and it can discriminate among systems.

1 Introduction

Match is a critical operator in many applications. It takes graph-like structures, e.g.,
lightweight ontologies, such as Goodglend Looksmart, or business catalogs, such
as UNSPSC and eCl@s$, and produces a mapping between the nodes that corre-
spond semantically to each other. Many diverse solutiotisganatching problem have
been proposed so far, see for example [2,19, 18, 16, 9, 6Th8ke solutions can be
classified as implementing syntactic or semantic matcldagending on how mapping
elements are computed and on the kind of similarity relatised (see [11] for in depth
discussion). In syntactic matching the idea is to computgéastic (very often string
based) similarity between the labels of nodes. Similaritthis case is typically repre-
sented as a [0, 1] coefficient, which is often considered as/algnce relation with a
certain level of plausibility or confidence (see, e.g., B3, In semantic matching the
idea is to compute semantic relations between conceptdanels) at nodes (see [10,
11]). The possible semantic relations are: equivalencengeje general or generaliza-
tion (3); less general or specification ] mismatch (); overlapping ().

3 http://www.google.com/Top/
4 http://www.looksmart.com/
5 http://www.unspsc.org/

8 http://lwww.eclass.de/



Unfortunately all the matching solutions suffer from thelaof evaluation. Un-
til very recently there was no comparative evaluation aniais quite difficult to find
two systems which were evaluated on the same dataset. Orf thisowhen exist-
ing, the evaluation efforts were mostly concentrated oass artificially synthesized
under questionable assumptions or on “toy” examples. Otiegable example was
the large scale dataset call€@axME described in [1]. This dataset is constructed from
the mappings extracted from real web directories and costhiousands of mappings.
However, this dataset contains only an incomplete set atip@snappings, and this
inherently limits its use, in that it allows only for the emwation of Recall. However,
Recall can be easily maximized at the expense of a poor Rreci®r instance by
returning all possible correspondences, i.e., the crosdyot of the input graphs. In
order to overcome this kind of problems a sophisticateduatadn methodology was
exploited in [7]. The key idea was to validate the systemsliits on another dataset of
much smaller size, where both Precision and Recall coulcstinated. However, this
opened a range of problems related to the comparabilityeofelults obtained on two
different datasets, and a general solution for the probldhases not exists.

In this paper we present a new large scale mapping datated takME 2 TaxME
2 extendsTaxME, it contains about 4500 mappings and it allows for the evalna
of both Precision and Recall. We have evaluata®dME 2using nine state of the art
solutions to the matching problem. The evaluation showssTdwaME 2satisfies the key
important properties ad€omplexityandDiscrimination capability as introduced in [1].
A dataset is complex if it is hard to solve even for state ofdhtematching systems,
while it is discriminating if different sets of mappings takfrom the dataset are hard
for different systems.

The rest of the paper is organized as follows. Section 2 pteseshort introduction
to the notions of matching and matching evaluation. Se@iemtends the results pre-
sented in [1] and discusses the features and properti€&ax®E Section 4 illustrates
how TaxME 2has been constructed. Section 5 presents the results okperiments
and shows thataxME 2satisfies the described requirements. Section 6 conclhées t
paper.

2 Matching evaluation

In order to motivate the matching problem and illustrate ofithe possible situations
which can arise in the data integration task let us use this(pathe Google and Ya-
hoo) directories depicted in Figure 1. Suppose that the iagk integrate these two
directories. The first step in the integration process iglemiify the matching candi-
dates. For exampleShoppingo; can be assumed equivalent $&oppingoq, while
Board_Gameso is less general thafamesps. Hereafter the subscripts designate
the directory (either O1 or O2) of the node considered.

We think of amapping elemenas a 4-tuple(ID;;, nl;, n2;, R), i = 1,..., Ny;
Jj =1,...,Ny; wherelD;; is a unique identifier of the given mapping elemerit; is
the i-th node of the first graplly; is the number of nodes in the first grapi®; is the
j-th node of the second graph/; is the number of nodes in the second graph; &nd
specifies a similarity relation of the given nodes. We defiradchingas the process of
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Fig. 1. Parts of Google and Yahoo directories

discovering mappings between two graph-like structuresutiih the application of a
matching algorithm.

A quantitative matching evaluation is based on the well kmanvinformation re-
trieval measures of relevance, namehgcisionandRecall Consider Figure 2; the cal-
culation of these measures is based on the comparison betheeappings produced
by a matching system (the area inside the circle labél@dFigure 2) and a complete
set of reference mappindé$ considered to be correct (the area inside the dotted circle
in Figure 2).H is usually produced by humans. Here and further we referds¢h of
all possible mappings (i.e., cross product of two input gg@sM . Finally, the cor-
rect mappings found by the system are thee positivesT P = S N H, the incorrect
mappings found by the system are faése positivesF'P = S — S N H, the correct
mappings missed by the system areftilee negativess’ N = H — SN H, and the in-
correct mappings not returned by the system arértieenegativesI’N = M — SN H.
Further we callH the “golden standard the mappings inH positive mappingsand
the mappings inV = M — H = TN + F P negative mappings

Complete set of mappings (M)

System mappings(S) Human mappings (H)

Fig. 2. Basic sets of mappings



Precision is a correctness measure which varies from [@ i§]calculated as

TP|  HNS
TP+FP| S

Precision =

1)

Recall is a completeness measure which varies from [0, i cllculated as

TP|  HNS

ll = =
Recall = orp PN = 1

)

However, neither Precision nor Recall alone can accurataijuate the match qual-
ity. In particular, Recall can easily be maximized at theemge of a poor Precision by
returning all possible correspondences, i.e. the crosdugptoof two input graphs. At
the same time, a high Precision can be achieved at the expéageor Recall by re-
turning only few (correct) correspondences. Thereforis, fiecessary to consider both
measures or a combined measure.

F-measure is a global measure of the matching quality. iesdrom [0, 1] and
calculated as a harmonic mean of Precision and Recall:

2 * Recall * Precision

F—-M = 3
casure Recall + Precision (3)

Notice that the golden standaffl must be known in advance in order to calculate
both Precision and Recall. This opens a problem of how toieedu The problem
is that the construction off is a manual process which, in the case of matching, is
guadratic with respect to the size of the graphs to be matdHed process turns to be
unfeasible for large datasets. For instance, in the datasbave exploited in this work,
namely the Google, Yahoo and Looksmart web directoried) elracture has the order
of 10° nodes. This means that constructionfbfivould require the manual evaluation
of 10'° mappings.

3 A dataset for evaluating Recall

A semiautomatic method for an approximation of the goldandgardH was proposed
in [1] and it was applied to the Google, Yahoo and Looksmarb wiectories. The
key idea was to rely on a reference interpretation for nodesstructed by looking
at their use. The assumption is that the semantics of nodebederived from their
pragmatics, namely from analyzing which documents aresifiad under which nodes.
In particular, in the work described in [1] the authors haxguad that two nodes are
equivalent if the sets of documents classified under thoskesidave a meaningful
overlap. The basic idea is therefore to compute the relshipnhypotheses based on
the co-occurence of documents.

Consider the example presented in Figure 3.Nebe a node in the first taxonomy
and N, be a node in the second taxonony,. and D, stand for the sets of documents
classified under the nodeg; and NV, respectively. The set of documems denotes
the contents classified in the ancestor nod&/gfthe set of documeni§; denotes the
contents classified in the children nodes\af.



Fig. 3. TaxME lllustration of a document-driven similarity assessment.

Theequivalenceneasure we use, as defined in [1], is

| D1 N Ds|
Eq(Ny,Ny) = 4
q( 1 2) |D1UD2‘—|D10D2| ( )

Notice that the range aEq(N7, N») is [0,00]. The intuition is that the moré,
and D, overlap the bigger iFq(N1, No) with Eq(N7, N2) becoming infinite with
D, = Ds. Following what described in [1Eq(N1, N3) is normalized to [0,1]. The
special case ab; = D is approximated to 1.

Eqg. 4 can be extended/modified to model also more generalgyess generality.
The basic intuition is to revise Eq. 4 taking advantage ofdbetextual encoding of
knowledge in terms of the hierarchy of categories. For imstaless generality can be
defined by looking at the overlapping of the sets of documelassified in the descen-
dants of Ny (C; in Figure 3) and the ancestors &% (A- in Figure 3).

TaxMEis computed starting from three main web directories: Geoghhoo! and
Looksmart. The web directories hold many interesting prige they are widely known,
they cover overlapping topics, they are heterogeneoug dateelarge, and they address
the same space of contents. All of this makes the working thgsis of documents
co-occurrence sustainable. The nodes are consideredegdas denoted by lexical
labels, the tree structures are considered as hieraraklatibns, and the URLS classi-
fied under a given node are taken to denote documents. The/fiod table summarizes
the total amount of processed data.

Table 1. Number of nodes and documents processed iTax®IEconstruction process

Web Directories| Google [Looksmart|Yahoo!
number of nodes 335.902| 884.406 (321.584
number of urls |2.425.21% 8.498.157|872.41(

Let us briefly summarize the five steps process by whatMEwas constructed.



Step 1 All three web directories were crawled, both the hierarghstructure and the
web content;

Step 2 The URLSs that did not exist in at least one web directory wéseatded;

Step 3 The nodes with a number of URLs under a given threshold (1@ereperi-
ment) were pruned,;

Step 4 A manual selection was performed with the goal to restrietahsessment of
the similarity metric to the subtrees concerning the sampie 180 pairs of sub trees
were selected.

Step 5 For each of the subtree pairs selected, an exhaustive ass@ssf correspon-
dences holding between nodes was performed. This was dosephyiting equiv-
alence metric defined by Eg. 4 and the corresponding mewicke$s and more
generality. The TaxME similarity metric was computed to lbe biggest out of the
three metrics, namely

Simrazme = mar(Eq(Ny, N2), Lg(N1, No), Mg(Ni, N2)) )
whereLg and M g denote less and more generality metrics respectively.

The distribution of mappings constructed us®wn .. g is depicted in Figure 4.
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Fig. 4. Distribution of mappings according to TaxME similarity metric

Notice that theTaxMEdataset is very robust to the change of its metric. The number
of mappings is in fact very stable and it grows substantiafijwo orders of magnitude,
only with a very small value of the metric (less than 0.1). Awagmatic decision, the
mappings with TaxME similarity metric above 0.5 were takemonstitute the golden
standardH . This results in a set of 2265 reference mappings, half otwhre equiv-
alence relationships and half are generalization relakigns. As depicted in Figure 5,
TaxMEis incomplete in the sense it contains only part of the magpholding between
the graph structures. The key difference with Figure 2 iddbethat a complete golden



standard (the area inside the dotted circle in Figure 5)nmuksited by exploiting an
incomplete one (the area inside the dashed circle in Figure 5

However, if we assume thdaxMEis a good representative éf we can use Eq.
2 for an estimation of Recall. In order to ensure that thisiaggion holds a set of

Complete set of mappings (M) TaxME

System results (S) Human mappings (H)

Fig. 5. Mapping comparison usinaxME T'P, F'N and F' P stand for true positives, false neg-
atives and false positives in respect widxME

requirements to be satisfied BgxMEcan be defined [1]

1. Correctnessnamely the fact thaf'ax M E C H (modulo annotation errors).

2. Complexity namely the fact that state of the art matching systems mper diffi-
culties when run ofaxME

3. Discrimination Capability namely the fact that different sets of mappings taken
from TaxMEare hard for the different state of the art systems.

As discussed in [1]TaxMEsatisfies these requirements.

4 A dataset for evaluating Precision

As from Eq 1 in order to evaluate Precision we need to kit which in turn requires
that we knowH. However, as from Section 2, computitfg in the case of a large
scale matching task requires an implausible human effaticH also that we can not
either use an incomplete golden standard composed onlyfaEitive mappings, e.g.
TaxME. In fact, as shown in Figure 5, FP can not be computed. Thikdschase
because'P,,.known = S N (H — TaxM E), marked as a gray area in Figure 5, is not
known (we do not know how to compufé).

"[1] introduced also théncrementalityproperty. This property states that a dataset allows for
the incremental discovery of the weaknesses of the tested system® Md¢ donsider this
property here because it is irrelevant to our goals.



Our proposal in this paper is to construct a golden standarthe evaluation of
both Recall and Precision, let us calllitz M E 2, as follows:

TaxMFE 2 =TaxMFE U Npo (6)

whereNr, is an incomplete golden standard composed only of negatppings (i.e.,
Nro C M — H see Figure 5). Of coursBax M E 2 must be a good representative of
M and therefore satisfy the three requirements describeldeiptevious section and
satisfied byfaxME Notice that the request of correctness significantly Brttie size of
Nrs since each mapping has to be evaluated by a human annotatgiVj»| < |M —
H|). At the same timeNr-» must be big enough in order to be the source of meaningful
results. Therefore, we requit¥, to be at least of the same size BgzM F (i.e.,
|Npo| > |[Tax M E)).

We constructV in two steps. In the first step, as depicted in Figure 7, a $utiée
of M is selected so thal/’ contains a big number of “hard” negative mappings. Intu-
itively a “hard” negative mapping is the mapping with highueof similarity measure
which is incorrect according to manual annotation. Considgin the web directories
used to constructaxME and Sim.. 1. We have randomly selected 100 mappings
ranging over variou$imr.. g Values and manually evaluated their correctness. No-
tice that this results in a relatively small amount of mamwaik as there are only about
one thousand of mappings to be analyzed. The results arenpeelsin Figure 6.
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Fig. 6. Distribution of incorrect mappings. Each column is calculated evaluati@gra@domly
selected mappings

The evaluation shows thaxMEis very robust as:

— itis very stable with a small percentage of incorrect maggiior a very large range
[0.3,1];

— the number of incorrect mappings becomes substantial figr small values of
TaxME similarity metric, namely with threshold less thaf.O.



Taking in account the requests of complexity and scalghili have selected the map-
pings with TaxME similarity in the 0.05-0.2 range. As frongkie 4, this allowed us to
obtain 18063+4776=22836 candidate mappings.

Set of candidate mappings (M)
Complete set of mappings (M) TaxME

FP:

System mappings (S) Human mappings (H)
Fig. 7. Mapping sets infaxME 2 The gray area stands fétP; a set of FP produced by the i-th
matching system o/’

Notice that at this point it is unclear wheth&f’ contains a large enough number of
negative mappings. This will be shown in the second stepravie subseN, of M’
is selected. This is done according to the following requiats:

1. ConstructVr- from the FPs computed by running state of the art matchingsys
on M’. This ensures thaNr, will be hard for all existing systems. Notice that
determining whether a mapping produced by a matching syistémFP requires
human annotation.

2. Select heterogeneous matching systems, namely systeitis nvake mistakes on
different sets of mappings.

3. The selected systems should be representatives of fleeedif classes of the ex-
isting matching techniques. This should prevaht, from being biased towards a

particular class of matching solutions.

4. ConstructNyo asNyy = |J, F'P;, whereF P; is the FP produced by i-th matching
system onM’, as depicted in Figure 7. This ensures that, is hard for each of
the systems and it is also discriminative.

5. The number of FPs produced by each of the systems shoutthiygacable in order
to prevent bias towards a particular class of matching &olat

We have selected three matching systems COMA [13], Siryil&tooding (SF) [17]
and S-Match (SM) [11]. The first, as from [1, 11], is argualblg best syntactic match-
ing system. The matching process proposed in COMA has betefiextended in [5]
and parts of it have been reused in the number of matchingragsincluding [15]. SF
utilizes a matching algorithm based on the ideas of sintylgiopagation. SF computes
an initial mapping exploiting a string based matcher. Thenrhapping is refined us-
ing fix-point computation and filtered according to some pfadd criteria. The idea



of similarity propagation have been further reused in [9kventhe fix point algorithm
is exploited for solving the system of linear equations. Bfemapping filtering tech-
niques have been further reused in the system describe@jirgaMatch® [11] differs
from SF and COMA as it implements semantic matching approashdescribed in
Section 1. Other semantic matching systems, similar to &Mare [3, 4].

We have manually evaluated the mappings found by running 808F and S-
Match onM’ and computed FP. Notice that here when evaluating the nmafchiality
we have not distinguished among different semantic ralatieor example, the map-
pingsA C B produced by S-Match and,; = B; produced by COMA have been
considered as TP il = B andA; C B; are TP according to human judgement.

Table 2 provides a quantitative description of the conténfaxME 2 and of the
effort needed to build it. As from the first row of Table 2 théalomumber of annotated

Table 2. Total number of mappings and number of FPM

COMA| SF | SM
Found (S) | 2553 (21632151
Incorrect (FP) 870 | 776|781

mappings is 2553+2163+2151=6867. Notice that this is 6rardémagnitude lower
than the number of mappings to be considered in the case gbletengolden stan-
dard. Notice also that the number of mappings per systenrysbatanced, as required.
Figure 8 how the FPs found by the systems are partitioned.

31.7%

Fig. 8. Partitioning of the FPs o/’

8 In the evaluation discussed in this paper we have used the basic versSeMatch and not
the enhanced version described in [1].



As from Figure 8, there are no FPs found by SM, COMA and SF tmgebr by
SM and COMA together. There are the small intersectionséetmhe FPs produced by
SM and SF (0.1%) or by COMA and SF (2.3 %). These results justif assumption
that all 3 systems belong to different classes.

The final result is thalVyo consists of 2374 mappings. Notice that the siz&Vgh,
is not equal to the sum of the FPs reported in the second rowld€R since there is,
as from Figure 8, some intersection among these sets. Tha ahiN» with Tax M E
has allowed us to compute a golden standBud: M e 2, which can be used for the
evaluation of both Recall and Precision, of 2265+2374=483a9pings.

5 Evaluating the dataset

This evaluation is designed in order to assess the Comyplené Discrimination Capa-
bility of TaxMe 2. This evaluation is done exploiting 6 state of the art syst@ralcon
[14], Apfel[6], CMS[15], ctxMatch2[4], OLA [9]and OMAP [2]). For all the systems
we use the default settings or, if applicable, the settimgsiged by the authors for
the OAEI-2005 [7] evaluation. We compare these results thighresults obtained by
the systems exploited in the dataset construction proce®$@, SF and SM). The
evaluation results, in terms of TP and FP, are presentedile Ba

Table 3.Number of FP and TP ohaxME 2dataset

FalconApfel| CMS|ctxMatch 2.20LA|OMAP|COMA| SF|SM
FP| 1313| 670 | 367 299 1356 1113 | 870 |776/781
TP| 706 | 269 | 319 298 724| 694 | 876 (218669

5.1 Complexity

Figure 9 presents the Precision, Recall and F-Measure alystems. As from the fig-
ure the maximum Precision results are about 0.5, a valuehwhisignificantly lower
than the results obtained with the previous datasets. Fonpbe, the average Precision
demonstrated by Falcon, FOAM, CMS and OMAP on the real woad pf the sys-
tematic tests (problems 301, 302, 303, 304) in the OAEI-28@Buation [7] was in the
0.91-0.93 range.

The Recall results mostly replicate the results presemtdd,i7]. The F-Measure
results are more interesting since they demonstrate theegaigd matching quality.
As from Figure 9, the best F-Measure is 0.44 what is much |divan the previously
reported values for the systems taking part in the evaloaticeviously reported in
other papers. The other interesting observation is thatad@sét construction process
(COMA,SF,SM) demonstrate a performance which is comparafith the other sys-
tems. In fact all evaluated systems have experienced the peshlems as COMA, SF
and SM. This justifies the claim thdtax M E 2 is very hard for the state of the art
matching systems.
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5.2 Discrimination Capability

Consider Figure 10. It describes how the FPSTaxME 2are partitioned according

6 systems
5 systemns 204,
20%

1 system
2%

4 zystemns 18%

3 systems
20%

Fig. 10. Partitioning of the FPs found by the 6 matching systems according to theanurhb
systems which have found them

to the results of Falcon, Apfel, CMS, ctxMatch2, OLA and OMARrious systems
experience difficulties on various parts of the dataset antyl 36 of the mappings are
computed as FP by all six matching systems. This showsthafi/ E 2 is difficult for
the different systems in different ways.

6 Conclusion and Future Work

In this paper we have presented a large scale mapping datassttucted starting from
the Google, Yahoo and Looksmart web directories. The deadlewvs for the evaluation



of Precision and Recall. Nine state of the art matching soistwere evaluated using
TaxME 2. The evaluation results highlight the fact that the datapssises the key
important properties of Correctness, Complexity and isicration capability.

As a future work we are going to investigate the mapping @atesnstruction pro-
cess in the case of ontologies which are more complex thaplsitaxonomies. The
other promising direction of research is devoted to thenkrautomation of the map-
ping dataset construction process. The ultimate goal éndinéction is to minimize the
human effort and increase the size of the datasets.
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