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Abstract. Ontology matching is one of the biggest challenges of Semantic Web
research. In the last years the number of matching techniques and systems has
significantly increased, and this, in turn, has raised the issue of their evaluation
and comparison. In this paper we present a mapping dataset extractedfrom the
Google, Yahoo and Looksmart web directories. This dataset allows forthe evalu-
ation of both Precision and Recall, and it is an order of magnitude larger than the
state of the art datasets with the same capabilities. We have evaluated this dataset
on nine state of the art matching solutions. The evaluation results highlight the
fact that the dataset has three key properties, namely it is error-free, it is hard to
solve, and it can discriminate among systems.

1 Introduction

Match is a critical operator in many applications. It takes two graph-like structures, e.g.,
lightweight ontologies, such as Google3 and Looksmart4, or business catalogs, such
as UNSPSC5 and eCl@ss6, and produces a mapping between the nodes that corre-
spond semantically to each other. Many diverse solutions tothe matching problem have
been proposed so far, see for example [2, 19, 18, 16, 9, 6, 13].These solutions can be
classified as implementing syntactic or semantic matching,depending on how mapping
elements are computed and on the kind of similarity relationused (see [11] for in depth
discussion). In syntactic matching the idea is to compute a syntactic (very often string
based) similarity between the labels of nodes. Similarity in this case is typically repre-
sented as a [0, 1] coefficient, which is often considered as equivalence relation with a
certain level of plausibility or confidence (see, e.g., [13,8]). In semantic matching the
idea is to compute semantic relations between concepts (notlabels) at nodes (see [10,
11]). The possible semantic relations are: equivalence (=); more general or generaliza-
tion (⊒); less general or specification (⊑) mismatch (⊥); overlapping (∩).

3 http://www.google.com/Top/
4 http://www.looksmart.com/
5 http://www.unspsc.org/
6 http://www.eclass.de/



Unfortunately all the matching solutions suffer from the lack of evaluation. Un-
til very recently there was no comparative evaluation and itwas quite difficult to find
two systems which were evaluated on the same dataset. On top of this, when exist-
ing, the evaluation efforts were mostly concentrated on datasets artificially synthesized
under questionable assumptions or on “toy” examples. One noticeable example was
the large scale dataset calledTaxMEdescribed in [1]. This dataset is constructed from
the mappings extracted from real web directories and contains thousands of mappings.
However, this dataset contains only an incomplete set of positive mappings, and this
inherently limits its use, in that it allows only for the evaluation of Recall. However,
Recall can be easily maximized at the expense of a poor Precision, for instance by
returning all possible correspondences, i.e., the cross product of the input graphs. In
order to overcome this kind of problems a sophisticated evaluation methodology was
exploited in [7]. The key idea was to validate the systems’ results on another dataset of
much smaller size, where both Precision and Recall could be estimated. However, this
opened a range of problems related to the comparability of the results obtained on two
different datasets, and a general solution for the problem still does not exists.

In this paper we present a new large scale mapping dataset calledTaxME 2. TaxME
2 extendsTaxME, it contains about 4500 mappings and it allows for the evaluation
of both Precision and Recall. We have evaluatedTaxME 2using nine state of the art
solutions to the matching problem. The evaluation shows that TaxME 2satisfies the key
important properties ofComplexityandDiscrimination capability, as introduced in [1].
A dataset is complex if it is hard to solve even for state of theart matching systems,
while it is discriminating if different sets of mappings taken from the dataset are hard
for different systems.

The rest of the paper is organized as follows. Section 2 presents a short introduction
to the notions of matching and matching evaluation. Section3 extends the results pre-
sented in [1] and discusses the features and properties ofTaxME. Section 4 illustrates
how TaxME 2has been constructed. Section 5 presents the results of our experiments
and shows thatTaxME 2satisfies the described requirements. Section 6 concludes the
paper.

2 Matching evaluation

In order to motivate the matching problem and illustrate oneof the possible situations
which can arise in the data integration task let us use the (parts of the Google and Ya-
hoo) directories depicted in Figure 1. Suppose that the taskis to integrate these two
directories. The first step in the integration process is to identify the matching candi-
dates. For example,ShoppingO1 can be assumed equivalent toShoppingO2, while
Board GamesO1 is less general thanGamesO2. Hereafter the subscripts designate
the directory (either O1 or O2) of the node considered.

We think of amapping elementas a 4-tuple〈IDij , n1i, n2j , R〉, i = 1, ..., N1;
j = 1, ..., N2; whereIDij is a unique identifier of the given mapping element;n1i is
the i-th node of the first graph,N1 is the number of nodes in the first graph;n2j is the
j-th node of the second graph,N2 is the number of nodes in the second graph; andR

specifies a similarity relation of the given nodes. We definematchingas the process of



Fig. 1.Parts of Google and Yahoo directories

discovering mappings between two graph-like structures through the application of a
matching algorithm.

A quantitative matching evaluation is based on the well known in information re-
trieval measures of relevance, namelyPrecisionandRecall. Consider Figure 2; the cal-
culation of these measures is based on the comparison between the mappings produced
by a matching system (the area inside the circle labelledS in Figure 2) and a complete
set of reference mappingsH considered to be correct (the area inside the dotted circle
in Figure 2).H is usually produced by humans. Here and further we refer to the set of
all possible mappings (i.e., cross product of two input graphs) asM . Finally, the cor-
rect mappings found by the system are thetrue positives, TP = S ∩ H, the incorrect
mappings found by the system are thefalse positives, FP = S − S ∩ H, the correct
mappings missed by the system are thefalse negatives, FN = H − S ∩H, and the in-
correct mappings not returned by the system are thetrue negatives, TN = M −S∩H.
Further we callH the “golden standard”, the mappings inH positive mappings, and
the mappings inN = M − H = TN + FP negative mappings.

Fig. 2.Basic sets of mappings



Precision is a correctness measure which varies from [0, 1].It is calculated as

Precision =
|TP |

|TP + FP |
=

H ∩ S

S
(1)

Recall is a completeness measure which varies from [0, 1]. Itis calculated as

Recall =
|TP |

|TP + FN |
=

H ∩ S

H
(2)

However, neither Precision nor Recall alone can accuratelyevaluate the match qual-
ity. In particular, Recall can easily be maximized at the expense of a poor Precision by
returning all possible correspondences, i.e. the cross product of two input graphs. At
the same time, a high Precision can be achieved at the expenseof a poor Recall by re-
turning only few (correct) correspondences. Therefore, itis necessary to consider both
measures or a combined measure.

F-measure is a global measure of the matching quality. It varies from [0, 1] and
calculated as a harmonic mean of Precision and Recall:

F − Measure =
2 ∗ Recall ∗ Precision

Recall + Precision
(3)

Notice that the golden standardH must be known in advance in order to calculate
both Precision and Recall. This opens a problem of how to acquire it. The problem
is that the construction ofH is a manual process which, in the case of matching, is
quadratic with respect to the size of the graphs to be matched. This process turns to be
unfeasible for large datasets. For instance, in the datasetwe have exploited in this work,
namely the Google, Yahoo and Looksmart web directories, each structure has the order
of 105 nodes. This means that construction ofH would require the manual evaluation
of 1010 mappings.

3 A dataset for evaluating Recall

A semiautomatic method for an approximation of the golden standardH was proposed
in [1] and it was applied to the Google, Yahoo and Looksmart web directories. The
key idea was to rely on a reference interpretation for nodes,constructed by looking
at their use. The assumption is that the semantics of nodes can be derived from their
pragmatics, namely from analyzing which documents are classified under which nodes.
In particular, in the work described in [1] the authors have argued that two nodes are
equivalent if the sets of documents classified under those nodes have a meaningful
overlap. The basic idea is therefore to compute the relationship hypotheses based on
the co-occurence of documents.

Consider the example presented in Figure 3. LetN1 be a node in the first taxonomy
andN2 be a node in the second taxonomy.D1 andD2 stand for the sets of documents
classified under the nodesN1 andN2 respectively. The set of documentsA2 denotes
the contents classified in the ancestor node ofN2; the set of documentsC1 denotes the
contents classified in the children nodes ofN1.
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Fig. 3.TaxME. Illustration of a document-driven similarity assessment.

Theequivalencemeasure we use, as defined in [1], is

Eq(N1, N2) =
|D1 ∩ D2|

|D1 ∪ D2| − |D1 ∩ D2|
(4)

Notice that the range ofEq(N1, N2) is [0,∞]. The intuition is that the moreD1

and D2 overlap the bigger isEq(N1, N2) with Eq(N1, N2) becoming infinite with
D1 ≡ D2. Following what described in [1]Eq(N1, N2) is normalized to [0,1]. The
special case ofD1 ≡ D2 is approximated to 1.

Eq. 4 can be extended/modified to model also more generality and less generality.
The basic intuition is to revise Eq. 4 taking advantage of thecontextual encoding of
knowledge in terms of the hierarchy of categories. For instance, less generality can be
defined by looking at the overlapping of the sets of documentsclassified in the descen-
dants ofN1 (C1 in Figure 3) and the ancestors ofN2 (A2 in Figure 3 ).

TaxME is computed starting from three main web directories: Google, Yahoo! and
Looksmart. The web directories hold many interesting properties: they are widely known,
they cover overlapping topics, they are heterogeneous, they are large, and they address
the same space of contents. All of this makes the working hypothesis of documents
co-occurrence sustainable. The nodes are considered as categories denoted by lexical
labels, the tree structures are considered as hierarchicalrelations, and the URLs classi-
fied under a given node are taken to denote documents. The following table summarizes
the total amount of processed data.

Table 1.Number of nodes and documents processed in theTaxMEconstruction process

Web Directories Google Looksmart Yahoo!
number of nodes335.902 884.406 321.585
number of urls 2.425.215 8.498.157 872.410

Let us briefly summarize the five steps process by whichTaxMEwas constructed.



Step 1 All three web directories were crawled, both the hierarchical structure and the
web content;

Step 2 The URLs that did not exist in at least one web directory were discarded;
Step 3 The nodes with a number of URLs under a given threshold (10 in the experi-

ment) were pruned;
Step 4 A manual selection was performed with the goal to restrict the assessment of

the similarity metric to the subtrees concerning the same topic. 50 pairs of sub trees
were selected.

Step 5 For each of the subtree pairs selected, an exhaustive assessment of correspon-
dences holding between nodes was performed. This was done byexploiting equiv-
alence metric defined by Eq. 4 and the corresponding metrics for less and more
generality. The TaxME similarity metric was computed to be the biggest out of the
three metrics, namely

SimTaxME = max(Eq(N1, N2), Lg(N1, N2),Mg(N1, N2)) (5)

whereLg andMg denote less and more generality metrics respectively.

The distribution of mappings constructed usingSimTaxME is depicted in Figure 4.

Fig. 4.Distribution of mappings according to TaxME similarity metric

Notice that theTaxMEdataset is very robust to the change of its metric. The number
of mappings is in fact very stable and it grows substantially, of two orders of magnitude,
only with a very small value of the metric (less than 0.1). As apragmatic decision, the
mappings with TaxME similarity metric above 0.5 were taken to constitute the golden
standardH. This results in a set of 2265 reference mappings, half of which are equiv-
alence relationships and half are generalization relationships. As depicted in Figure 5,
TaxMEis incomplete in the sense it contains only part of the mappings holding between
the graph structures. The key difference with Figure 2 is thefact that a complete golden



standard (the area inside the dotted circle in Figure 5) is simulated by exploiting an
incomplete one (the area inside the dashed circle in Figure 5).

However, if we assume thatTaxME is a good representative ofH we can use Eq.
2 for an estimation of Recall. In order to ensure that this assumption holds a set of

Fig. 5. Mapping comparison usingTaxME. TP , FN andFP stand for true positives, false neg-
atives and false positives in respect withTaxME

requirements to be satisfied byTaxMEcan be defined [1]:7

1. Correctness, namely the fact thatTaxME ⊂ H (modulo annotation errors).
2. Complexity, namely the fact that state of the art matching systems experience diffi-

culties when run onTaxME.
3. Discrimination Capability, namely the fact that different sets of mappings taken

from TaxMEare hard for the different state of the art systems.

As discussed in [1],TaxMEsatisfies these requirements.

4 A dataset for evaluating Precision

As from Eq 1 in order to evaluate Precision we need to knowFP , which in turn requires
that we knowH. However, as from Section 2, computingH in the case of a large
scale matching task requires an implausible human effort. Notice also that we can not
either use an incomplete golden standard composed only frompositive mappings, e.g.
TaxME. In fact, as shown in Figure 5, FP can not be computed. This is the case
becauseFPunknown = S ∩ (H − TaxME), marked as a gray area in Figure 5, is not
known (we do not know how to computeH).

7 [1] introduced also theIncrementalityproperty. This property states that a dataset allows for
the incremental discovery of the weaknesses of the tested systems. We do not consider this
property here because it is irrelevant to our goals.



Our proposal in this paper is to construct a golden standard for the evaluation of
both Recall and Precision, let us call itTaxME 2, as follows:

TaxME 2 = TaxME ∪ NT2 (6)

whereNT2 is an incomplete golden standard composed only of negative mappings (i.e.,
NT2 ⊂ M − H see Figure 5). Of courseTaxME 2 must be a good representative of
M and therefore satisfy the three requirements described in the previous section and
satisfied byTaxME. Notice that the request of correctness significantly limits the size of
NT2 since each mapping has to be evaluated by a human annotator (i.e.,|NT2| ≪ |M−
H|). At the same time,NT2 must be big enough in order to be the source of meaningful
results. Therefore, we requireNT2 to be at least of the same size asTaxME (i.e.,
|NT2| ≥ |TaxME|).

We constructNT2 in two steps. In the first step, as depicted in Figure 7, a subset M ′

of M is selected so thatM ′ contains a big number of “hard” negative mappings. Intu-
itively a “hard” negative mapping is the mapping with high value of similarity measure
which is incorrect according to manual annotation. Consider again the web directories
used to constructTaxMEandSimTaxME . We have randomly selected 100 mappings
ranging over variousSimTaxME values and manually evaluated their correctness. No-
tice that this results in a relatively small amount of manualwork as there are only about
one thousand of mappings to be analyzed. The results are presented in Figure 6.

Fig. 6. Distribution of incorrect mappings. Each column is calculated evaluating 100 randomly
selected mappings

The evaluation shows thatTaxMEis very robust as:

– it is very stable with a small percentage of incorrect mappings for a very large range
[0.3,1];

– the number of incorrect mappings becomes substantial for very small values of
TaxME similarity metric, namely with threshold less than 0.1.



Taking in account the requests of complexity and scalability we have selected the map-
pings with TaxME similarity in the 0.05-0.2 range. As from Figure 4, this allowed us to
obtain 18063+4776=22836 candidate mappings.

Fig. 7. Mapping sets inTaxME 2. The gray area stands forFPi a set of FP produced by the i-th
matching system onM ′

Notice that at this point it is unclear whetherM ′ contains a large enough number of
negative mappings. This will be shown in the second step, where the subsetNT2 of M ′

is selected. This is done according to the following requirements:

1. ConstructNT2 from the FPs computed by running state of the art matching systems
on M ′. This ensures thatNT2 will be hard for all existing systems. Notice that
determining whether a mapping produced by a matching systemis in FP requires
human annotation.

2. Select heterogeneous matching systems, namely systems which make mistakes on
different sets of mappings.

3. The selected systems should be representatives of the different classes of the ex-
isting matching techniques. This should preventNT2 from being biased towards a
particular class of matching solutions.

4. ConstructNT2 asNT2 =
⋃

i FPi, whereFPi is the FP produced by i-th matching
system onM ′, as depicted in Figure 7. This ensures thatNT2 is hard for each of
the systems and it is also discriminative.

5. The number of FPs produced by each of the systems should be comparable in order
to prevent bias towards a particular class of matching solutions.

We have selected three matching systems COMA [13], Similarity Flooding (SF) [17]
and S-Match (SM) [11]. The first, as from [1, 11], is arguably the best syntactic match-
ing system. The matching process proposed in COMA has been further extended in [5]
and parts of it have been reused in the number of matching systems including [15]. SF
utilizes a matching algorithm based on the ideas of similarity propagation. SF computes
an initial mapping exploiting a string based matcher. Then the mapping is refined us-
ing fix-point computation and filtered according to some predefined criteria. The idea



of similarity propagation have been further reused in [9] where the fix point algorithm
is exploited for solving the system of linear equations. TheSF mapping filtering tech-
niques have been further reused in the system described in [12]. S-Match8 [11] differs
from SF and COMA as it implements semantic matching approach, as described in
Section 1. Other semantic matching systems, similar to S-Match, are [3, 4].

We have manually evaluated the mappings found by running COMA, SF and S-
Match onM ′ and computed FP. Notice that here when evaluating the matching quality
we have not distinguished among different semantic relations. For example, the map-
pingsA ⊑ B produced by S-Match andA1 ≡ B1 produced by COMA have been
considered as TP ifA ≡ B andA1 ⊑ B1 are TP according to human judgement.

Table 2 provides a quantitative description of the content of TaxME 2, and of the
effort needed to build it. As from the first row of Table 2 the total number of annotated

Table 2.Total number of mappings and number of FP onM
′

COMA SF SM
Found (S) 2553 21632151

Incorrect (FP) 870 776 781

mappings is 2553+2163+2151=6867. Notice that this is 6 orders of magnitude lower
than the number of mappings to be considered in the case of complete golden stan-
dard. Notice also that the number of mappings per system is very balanced, as required.
Figure 8 how the FPs found by the systems are partitioned.

Fig. 8.Partitioning of the FPs onM ′

8 In the evaluation discussed in this paper we have used the basic version ofS-Match and not
the enhanced version described in [1].



As from Figure 8, there are no FPs found by SM, COMA and SF together, or by
SM and COMA together. There are the small intersections between the FPs produced by
SM and SF (0.1%) or by COMA and SF (2.3 %). These results justify our assumption
that all 3 systems belong to different classes.

The final result is thatNT2 consists of 2374 mappings. Notice that the size ofNT2

is not equal to the sum of the FPs reported in the second row of Table 2 since there is,
as from Figure 8, some intersection among these sets. The union ofNT2 with TaxME

has allowed us to compute a golden standardTaxMe 2, which can be used for the
evaluation of both Recall and Precision, of 2265+2374=4639mappings.

5 Evaluating the dataset

This evaluation is designed in order to assess the Complexity and Discrimination Capa-
bility of TaxMe 2. This evaluation is done exploiting 6 state of the art systems (Falcon
[14], Apfel[6], CMS[15], ctxMatch2[4], OLA [9]and OMAP [20]). For all the systems
we use the default settings or, if applicable, the settings provided by the authors for
the OAEI-2005 [7] evaluation. We compare these results withthe results obtained by
the systems exploited in the dataset construction process (COMA, SF and SM). The
evaluation results, in terms of TP and FP, are presented in Table 3.

Table 3.Number of FP and TP onTaxME 2dataset

FalconApfel CMS ctxMatch 2.2OLA OMAP COMA SF SM
FP 1313 670 367 299 1356 1113 870 776 781
TP 706 269 319 298 724 694 876 218 669

5.1 Complexity

Figure 9 presents the Precision, Recall and F-Measure of thesystems. As from the fig-
ure the maximum Precision results are about 0.5, a value which is significantly lower
than the results obtained with the previous datasets. For example, the average Precision
demonstrated by Falcon, FOAM, CMS and OMAP on the real world part of the sys-
tematic tests (problems 301, 302, 303, 304) in the OAEI-2005evaluation [7] was in the
0.91-0.93 range.

The Recall results mostly replicate the results presented in [1, 7]. The F-Measure
results are more interesting since they demonstrate the aggregated matching quality.
As from Figure 9, the best F-Measure is 0.44 what is much lowerthan the previously
reported values for the systems taking part in the evaluation, previously reported in
other papers. The other interesting observation is that on dataset construction process
(COMA,SF,SM) demonstrate a performance which is comparable with the other sys-
tems. In fact all evaluated systems have experienced the same problems as COMA, SF
and SM. This justifies the claim thatTaxME 2 is very hard for the state of the art
matching systems.



Fig. 9.Evaluation results. Precision, Recall and F-Measure onTaxME 2

5.2 Discrimination Capability

Consider Figure 10. It describes how the FPs inTaxME 2are partitioned according

Fig. 10. Partitioning of the FPs found by the 6 matching systems according to the number of
systems which have found them

to the results of Falcon, Apfel, CMS, ctxMatch2, OLA and OMAP. Various systems
experience difficulties on various parts of the dataset and only 3% of the mappings are
computed as FP by all six matching systems. This shows thatTaxME 2 is difficult for
the different systems in different ways.

6 Conclusion and Future Work

In this paper we have presented a large scale mapping datasetconstructed starting from
the Google, Yahoo and Looksmart web directories. The dataset allows for the evaluation



of Precision and Recall. Nine state of the art matching solutions were evaluated using
TaxME 2. The evaluation results highlight the fact that the datasetposses the key
important properties of Correctness, Complexity and Discrimination capability.

As a future work we are going to investigate the mapping dataset construction pro-
cess in the case of ontologies which are more complex than simple taxonomies. The
other promising direction of research is devoted to the further automation of the map-
ping dataset construction process. The ultimate goal in this direction is to minimize the
human effort and increase the size of the datasets.
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